Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Disordering of the $\left[\mathrm{NbOF}_{5}\right]^{2-}$ complex anions in bis(glycinium) pentafluoridooxidoniobate (V) and $\operatorname{bis}(\beta$-alaninium) pentafluoridooxidoniobate(V) dihydrate

A. V. Gerasimenko,* M. A. Pushilin and R. L. Davidovich

Institute of Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, Prospekt 100-letiya Vladivostoka 159, Vladivostok 690022, Russian Federation Correspondence e-mail: gerasimenko@ich.dvo.ru

Received 14 May 2008
Accepted 16 August 2008
Online 4 October 2008
The title compounds, $\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{NO}_{2}\right)_{2}\left[\mathrm{NbOF}_{5}\right]$, (I), and $\left(\mathrm{C}_{3} \mathrm{H}_{8^{-}}\right.$ $\left.\mathrm{NO}_{2}\right)_{2}\left[\mathrm{NbOF}_{5}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$, (II), are built from isolated distorted octahedral $\left[\mathrm{NbOF}_{5}\right]^{2-}$ complex anions, amino acid cations and water molecules [for (II)]. In the pentafluoridooxidoniobate (V) anions, the Nb and O atoms, and the F atoms in trans positions with respect to the O atoms, are disordered about an inversion centre for both structures. The Nb atoms are shifted from the inversion centres by distances of 0.1455 (1) and 0.1263 (2) \AA for (I) and (II), respectively. The $\mathrm{Nb}=\mathrm{O}$ and $\mathrm{Nb}-\mathrm{F}$ (trans) bond lengths are 1.7952 (3) and 2.0862 (3) \AA, respectively, for (I), and 1.8037 (7) and 2.0556 (7) \AA for (II). In the crystal structures, cations and water molecules [for (II)] are linked to the $\left[\mathrm{NbOF}_{5}\right]^{2-}$ anions via hydrogen bonds. This study demonstrates the possibility of true geometry determination of disordered $\left[\mathrm{NbOF}_{5}\right]^{2-}$ complex anions in centrosymmetric structures.

Comment

Recently, hybrid organic-inorganic compounds have been synthesized and intensively studied due to their exceptional importance for designing materials with structure-dependent properties, such as nonlinear optical activity, superionic conductivity, and piezoelectric and ferroelectric properties. Special attention has been given to compounds of the early transition metals with distorted coordination polyhedra in which the metal atoms are displaced from the centre of the polyhedron toward a vertex, edge or face. These metals include niobium, characterized by the displacement of the Nb atom from the centre of the octahedron in the $\left[\mathrm{NbOF}_{5}\right]^{2-}$ anion in the direction of the O atom along the $\mathrm{Nb}=\mathrm{O}$ bond, caused by electronic effects ['primary' distortion (Welk et al., 2002; Izumi et al., 2005)]. Sometimes in the $\left[\mathrm{NbOF}_{5}\right]^{2-}$ anion, the Nb atom is located on or near any element of symmetry
that results in a statistical arrangement of ligands around it and this complicates analysis of the accurate geometry of the complex anions. The present work deals with the determination of the crystal structures of bis(glycinium) pentafluoridooxidoniobate(V), (I), and bis(β-alaninium) pentafluoridooxidoniobate(V) dihydrate, (II), and the study of the disordering of the $\left[\mathrm{NbOF}_{5}\right]^{2-}$ complex anions in these compounds.

For both structures, the locations of the Nb atoms at the inversion centres were determined by direct methods and confirmed by the Patterson function. Thus, the structures of (I) and (II) were initially solved with the Nb atoms located at centres of inversion [Wyckoff position $2 a$ for (I) and $1 a$ for (II)] and atoms F1 and O1 occupying the same position. Leastsquares refinement with anisotropic displacement parameters for all non-H atoms resulted in an $R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]$ value of 0.0579 for (I) and 0.0255 for (II). At this stage, the lengths of the $\mathrm{Nb}-\mathrm{F} 1 / \mathrm{O} 1$ bonds were approximately equal to the

Figure 1
The $\left[\mathrm{NbOF}_{5}\right]^{2-}$ anions, showing the elongated displacement ellipsoids of the Nb1 atoms when situated on the inversion centre [(a) for (I) and (c) for (II)] and the disordered displacement of the Nb 1 atoms from the inversion centre [(b) for (I) and (d) for (II)]. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (i) $-x,-y+1$, $-z+1$, for (I); (i) $-x+2,-y,-z+2$, for (II).]

Figure 2
A fragment of the cationic layer of (I), viewed parallel to the $a c$ plane. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Hydrogen bonds are shown as dotted lines. [Symmetry codes: (iii) $x,-y+\frac{3}{2}, z+\frac{1}{2}$; (vi) $x-1, y$, z.]
average mean values of $\mathrm{Nb}=\mathrm{O}$ and $\mathrm{Nb}-\mathrm{F}$ (trans) bonds for ordered structures (Pushilin et al., 2007; Zhu et al., 2005; Zhu \& Tang, 2005, 2006; Sarin et al., 1977), namely 1.939 Å for (I) and $1.930 \AA$ for (II). Analysis of the anisotropic displacement parameters showed that the Nb 1 atoms had significant thermal displacement along the $\mathrm{Nb} 1-\mathrm{F} 1 / \mathrm{O} 1$ directions in both structures (Fig. $1 a$ and $1 c$). The maximal axis of the Nb 1 displacement ellipsoid $\left(\sigma_{1}\right)$ had angles with the $\mathrm{Nb} 1-\mathrm{F} 1 / \mathrm{O} 1$ bond of 8° for (I) and 1° for (II), which make no physical sense, since the $\mathrm{Nb}=\mathrm{O}$ bond is strongest in $\left[\mathrm{NbOF}_{5}\right]^{2-}$ anions (Kharitonov \& Buslaev, 1964; Welk et al., 2002; Izumi et al., 2005). In addition, for difference electron-density syntheses with isotropic displacement parameters for the Nb 1 atoms, the highest peaks $(Q 1)$ [28 e \AA^{-3} for (I) and $10 \mathrm{e}^{-3}$ for (II)] were located along the $\mathrm{Nb} 1-\mathrm{F} 1 / \mathrm{O} 1$ bonds at distances from the Nb 1 atoms of 0.33 and $0.47 \AA$ for (I) and (II), respectively. In our opinion, the above factors indicate displacement of the Nb 1 atoms from the centres of inversion towards the O atoms along the $\mathrm{Nb} 1-\mathrm{F} 1 / \mathrm{O} 1$ directions. We have checked this assumption by placing the Nb 1 atoms approximately in the middle of the $\mathrm{Nb} 1 \cdots Q 1$ distances with half-occupancy of the Nb 1 sites. Refinement led to determination of the Nb 1 positions at distances of 0.1455 (1) \AA for (I) and 0.1263 (2) \AA for (II) from the centres of inversion and demonstrated satisfactory anisotropy of the Nb 1 atoms (Fig. $1 b$ and $1 d$) [the angle between σ_{1} and the $\mathrm{Nb} 1-\mathrm{F} 1 / \mathrm{O} 1$ direction is 54° for (I) and 37° for (II)]. The resulting geometric parameters of the $\left[\mathrm{NbOF}_{5}\right]^{2-}$ anion are comparable with those of the same anions for ordered structures. For similar reasons, the Nb atom

Figure 3
The structure of (I), viewed along the a axis.
was moved from the twofold rotation axis in the $\mathrm{Na}_{2}\left[\mathrm{NbOF}_{5}\right]$ structure (Stomberg, 1984), which also resulted in a more accurate geometry for the $\left[\mathrm{NbOF}_{5}\right]^{2-}$ anion.

Due to the statistical distribution of the Nb atoms in (I) and (II), one should also expect splitting of the ligand positions. Refinement of models where ligand positions were split into two sites was performed for both structures. However, in our experiments, these positions were indistinguishable within the limits of experimental error. Thus, in (I) and (II) the complex anions are statistically disordered about an inversion centre. The Nb atoms are coordinated by five F atoms and one O atom, forming distorted octahedra. The $\mathrm{Nb}-\mathrm{F}$ bond in a trans position to the $\mathrm{Nb}=\mathrm{O}$ bond is significantly longer than the other four $\mathrm{Nb}-\mathrm{F}$ bonds in the polyhedra (Tables 1 and 3). The Nb 1 atoms are displaced from the equatorial planes of the octahedra in the direction of the axial O1 atoms by 0.1455 (1) and 0.1263 (2) \AA for (I) and (II), respectively.

The asymmetric unit of (I) contains one-half of an $\left[\mathrm{NbOF}_{5}\right]^{2-}$ anion and one glycinium cation. The glycinium cation is protonated on the amine group and thus carries a positive charge. The $\mathrm{C} 1-\mathrm{O} 3$ bonds $[1.3169$ (4) \AA] are much longer than $\mathrm{C} 1-\mathrm{O} 2[1.2158$ (4) \AA], indicating localized single and double bonds, respectively. The glycinium cations are linked by intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds to form layers parallel to the $a c$ plane (Fig. 2). By a combination of $\mathrm{N}-\mathrm{H} \cdots \mathrm{F}, \mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{F}$ hydrogen bonds (Table 2 and Fig. 3), some of which are weak and bi- or trifurcated, the layers are linked to the $\left[\mathrm{NbOF}_{5}\right]^{2-}$ anions. It should be noted that the structure includes two short $\mathrm{O}-\mathrm{H} \cdots \mathrm{F} / \mathrm{O}$ hydrogen bonds between the hydroxyl groups of the glycinium cations and the axial F 1 and O 1 atoms having the highest negative charge in the $\left[\mathrm{NbOF}_{5}\right]^{2-}$ anion (Izumi et al., 2005). Also, in the structure of (I), there is a very weak noncovalent interaction, viz. $\mathrm{F} 3(\delta-) \cdots \mathrm{C} 1^{\text {iii }}(\delta+)[2.8446$ (5) \AA; symmetry code: (iii) x, $\left.-y+\frac{3}{2}, z+\frac{1}{2}\right]$, which is slightly less than the sum of the van der

Figure 4
A fragment of the chain of hydrogen-bonded cations and water molecules of (II). Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. Hydrogen bonds are shown as dotted lines. [Symmetry codes: (iii) $-x+1,-y+2$, $-z+1 ;(\mathrm{v})-x+1,-y+1,-z+1$.]

Figure 5
The structure of (II), viewed along the c axis.

Waals radii of F and C atoms (3.17 Å; Bondi, 1964). Similar short contacts between the F atom and the C atom of a carboxyl group are also present in the structures of bis(DLvalinium) pentafluoridooxidoniobate(V) (2.840 Å; Pushilin et al., 2007), sodium tris(glycinium) bis(hexafluorosilicate) glycine trisolvate ($2.870 \AA$; Narayana et al., 2007) and 4-methylbenzoic acidium hexafluoroarsenate p-toluic acid (2.920 and $2.940 \AA$; Lindeman et al., 2005).

The asymmetric unit of (II) contains one-half of an $\left[\mathrm{NbOF}_{5}\right]^{2-}$ anion, one β-alaninium cation and one water molecule. The positive charge of the cation is localized on the amine group. The single $(\mathrm{C} 1-\mathrm{O} 3)$ and double $(\mathrm{C} 1=\mathrm{O} 2)$ bonds in the carboxyl group are 1.3270 (11) and 1.2097 (10) \AA, respectively. The cations and water molecules are linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds to form chains along the b axis and these chains are packed into layers parallel to the $a b$ plane (Fig. 4 and Table 4). The anions, cations and water molecules are linked by a network of $\mathrm{O}-\mathrm{H} \cdots \mathrm{F}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{F}$ hydrogen bonds into a three-dimensional framework (Fig. 5). As in (I), the shortest hydrogen bonds are formed with atoms F1 and O1 of the $\left[\mathrm{NbOF}_{5}\right]^{2-}$ anion.

Experimental

Compound (I) was synthesized by the reaction of $\mathrm{Nb}_{2} \mathrm{O}_{5}(1.33 \mathrm{~g}$, $5 \mathrm{mmol})$ with glycine $(1.50 \mathrm{~g}, 20 \mathrm{mmol})$ in a solution of hydrofluoric acid $(48 \%, 40 \mathrm{ml})$. The solution was allowed to evaporate slowly at room temperature. After a few days, colourless crystals suitable for X-ray diffraction were obtained. These were separated from the solution, washed with a small amount of acetone and dried to a constant weight in air. Compound (II) was synthesized using a route similar to that for the preparation of (I), viz. by the reaction of $\mathrm{Nb}_{2} \mathrm{O}_{5}$ $(1.33 \mathrm{~g}, 5 \mathrm{mmol})$ with β-alanine ($1.78 \mathrm{~g}, 20 \mathrm{mmol}$) in a solution of hydrofluoric acid ($48 \%, 40 \mathrm{ml}$).

Compound (I)

Crystal data

$\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{NO}_{2}\right)_{2}\left[\mathrm{NbOF}_{5}\right]$
$M_{r}=356.07$
Monoclinic, $P 2_{1} / c$
$a=5.3532(1) \AA$ 。
$b=10.8585$ (3) \AA
$c=8.9913$ (2) \AA
$\beta=90.022(1)^{\circ}$

Data collection

Bruker SMART 1000 CCD areadetector diffractometer
Absorption correction: for a sphere (SADABS; Bruker, 2003)
$T_{\text {min }}=0.669, T_{\text {max }}=0.723$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.028$
$w R\left(F^{2}\right)=0.075$
$S=1.11$
5525 reflections
$V=522.64(2) \AA^{3}$
$Z=2$
Mo $K \alpha$ radiation
$\mu=1.24 \mathrm{~mm}^{-1}$
$T=173$ (2) K
0.28×0.14 (radius) mm

19292 measured reflections
5525 independent reflections
5027 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.033$

85 parameters
H -atom parameters constrained
$\Delta \rho_{\text {max }}=1.00 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.95 \mathrm{e}^{-3}$

Table 1
Selected bond lengths (A) for (I).

Nb1-O1	$1.7952(3)$	Nb1-F2	
Nb1-F1	$1.9484(3)$		
Nb1-F2	$2.0862(3)$	Nb1-F3	$1.9233(3)$
	$1.9218(3)$	Nb1-F3	$1.9264(3)$

Symmetry code: (i) $-x,-y+1,-z+1$.

Table 2
Hydrogen-bond geometry ($\left({ }^{\circ},{ }^{\circ}\right.$) for (I).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3-\mathrm{H} 3 \cdots(\mathrm{~F} 1 / \mathrm{O} 1)^{\mathrm{ii}}$	0.84	1.69	$2.5268(4)$	174
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 2^{\mathrm{iii}}$	0.91	2.45	$2.9149(5)$	112
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots(\mathrm{~F} 1 / \mathrm{O} 1)^{\mathrm{iv}}$	0.91	2.25	$2.8259(4)$	120
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{~F}^{\mathrm{v}}$	0.91	2.25	$2.8640(4)$	124
$\mathrm{~N} 1-\mathrm{H} 1 B \cdots \mathrm{~F} 2$	0.91	1.84	$2.7264(4)$	164
$\mathrm{~N} 1-\mathrm{H} 1 C \cdots \mathrm{O} 3^{\mathrm{vi}}$	0.91	2.21	$3.0707(4)$	158
$\mathrm{~N} 1-\mathrm{H} 1 C \cdots \mathrm{O} 2$	0.91	2.27	$2.7121(4)$	109

Symmetry codes: (ii) $x+1, y, z-1$; (iii) $x,-y+\frac{3}{2}, z+\frac{1}{2}$; (iv) $x,-y+\frac{3}{2}, z-\frac{1}{2}$; (v) $-x+1, y+\frac{1}{2},-z+\frac{1}{2}$; (vi) $x-1, y, z$.

Table 3
Selected bond lengths (\AA) for (II).

Nb1-F1 ${ }^{\mathrm{i}}$	$2.0556(7)$	Nb1-F2	
Nb1-O1	$1.8037(7)$	Nb1-F3	$1.9443(7)$
Nb1-F2	$1.9186(7)$	Nb1-F3	$1.9420(7)$
			$1.9129(7)$

[^0]
Compound (II)

Crystal data

$\left(\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{NO}_{2}\right)_{2}\left[\mathrm{NbOF}_{5}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=420.15$
Triclinic, $P \overline{1}$
$a=6.9552$ (8) \AA
$b=7.2092$ (8) \AA
$c=8.0205$ (9) \AA
$\alpha=74.609(2)^{\circ}$
$\beta=86.223(2)^{\circ}$

Data collection

Bruker SMART 1000 CCD areadetector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2003) $T_{\text {min }}=0.794, T_{\text {max }}=0.814$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.025$
$w R\left(F^{2}\right)=0.064$
$S=1.15$
2215 reflections
108 parameters
$\gamma=74.016(2)^{\circ}$
$V=372.74$ (7) \AA^{3}
$Z=1$
Mo $K \alpha$ radiation
$\mu=0.90 \mathrm{~mm}^{-1}$
$T=203(2) \mathrm{K}$
$0.27 \times 0.25 \times 0.24 \mathrm{~mm}$

4033 measured reflections 2215 independent reflections 2114 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.021$

H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text {max }}=0.53 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.56 \mathrm{e}^{-3}$

Table 4
Hydrogen-bond geometry (${ }^{\circ},{ }^{\circ}$) for (II).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3-\mathrm{H} 3 \cdots(\mathrm{~F} 1 / \mathrm{O} 1)^{\mathrm{ii}}$	0.83	1.79	$2.6143(9)$	170
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 2$	0.90	2.29	$2.9159(11)$	126
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 4$	0.90	2.37	$3.0766(12)$	135
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 2^{\mathrm{iii}}$	0.90	2.45	$2.8660(10)$	108
$\mathrm{~N} 1-\mathrm{H} 1 B \cdots \mathrm{~F}^{\text {iv }}$	0.90	2.04	$2.8069(10)$	142
$\mathrm{~N} 1-\mathrm{H} 1 C \cdots \mathrm{O}^{\mathrm{v}}$	0.90	1.90	$2.8019(12)$	175
$\mathrm{O}^{2}-\mathrm{H} 1 \cdots(\mathrm{~F} 1 / \mathrm{O} 1)^{\mathrm{v}}$	$0.761(14)$	$1.979(15)$	$2.7201(9)$	$164.6(15)$
$\mathrm{O}^{2}-\mathrm{H} 2 \cdots \mathrm{~F}^{\mathrm{vi}}$	$0.836(16)$	$1.967(16)$	$2.7923(10)$	$168.9(16)$

Symmetry codes: (ii) $-x+2,-y+1,-z+1$; (iii) $-x+1,-y+2,-z+1$; (iv) $-x+1,-y+1,-z+2 ;(\mathrm{v})-x+1,-y+1,-z+1$; (vi) $x, y+1, z-1$.

The Nb 1 atoms were refined with site occupancies of 0.5 . Atoms F1 and O 1 were refined together, assuming that their positional and displacement parameters were the same, with site occupancies of 0.5 . For the glycinium and β-alaninium cations, after checking their presence in difference maps, all H atoms were placed in geometrically
idealized positions and refined in the riding-model approximation, with $\mathrm{C}-\mathrm{H}=0.99$ or $0.98 \AA, \mathrm{~N}-\mathrm{H}=0.91$ or $0.90 \AA$ and $\mathrm{O}-\mathrm{H}=0.84$ or $0.83 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2$ or $1.5 U_{\text {eq }}(\mathrm{C}, \mathrm{N}, \mathrm{O})$. For the water molecules, the H atoms were located in a difference map and refined with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$.

For both compounds, data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: $S H E L X T L$; molecular graphics: $X P$ in SHELXTL; software used to prepare material for publication: publCIF (Westrip, 2008).

The authors thank the Russian Foundation for Basic Research (project No. 08-03-00355) for financial support, Dr E. Voit for valuable discussions and Mrs G. A. Fedorishcheva for assistance in the synthesis of the compounds.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SF3082). Services for accessing these data are described at the back of the journal.

References

Bondi, A. (1964). J. Phys. Chem. 68, 441-451.
Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2003). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Izumi, H. K., Kirsch, J. E., Stern, C. L. \& Poeppelmeier, K. R. (2005). Inorg. Chem. 44, 884-895.
Kharitonov, Yu. Ya. \& Buslaev, Yu. A. (1964). Izv. Akad. Nauk SSSR Ser. Khim. pp. 808-814.
Lindeman, S. V., Neretin, I. S., Davlieva, M. G. \& Kochi, J. K. (2005). J. Org. Chem. 70, 3263-3266.
Narayana, M. B., Rai, C., Dharmaprakash, S. M. \& Harrison, W. T. A. (2007). Acta Cryst. C63, m312-m314.
Pushilin, M. A., Gerasimenko, A. V. \& Davidovich, R. L. (2007). Acta Cryst. E63, m2086.
Sarin, V. A., Dudarev, V. Ya., Fykin, L. E., Gorbunova, Yu. E., Il'in, E. G. \& Buslaev, Yu. A. (1977). Dokl. Akad. Nauk SSSR, 236, 393-396.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Stomberg, R. (1984). Acta Chem. Scand. Ser. A, 38, 603-607.
Welk, M. E., Norquist, A. J., Arnold, F. P., Stern, C. L. \& Poeppelmeier, K. R. (2002). Inorg. Chem. 41, 5119-5125.

Westrip, S. P. (2008). publCIF. In preparation.
Zhu, G., Liu, Y.-Y., Wang, G. \& Tang, Z.-X. (2005). Acta Cryst. E61, m1566m1567.
Zhu, G. \& Tang, Z. (2005). Acta Cryst. E61, m2118-m2120.
Zhu, G. \& Tang, Z.-X. (2006). Acta Cryst. E62, m1018-m1020.

[^0]: Symmetry code: (i) $-x+2,-y,-z+2$.

